If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+50
We move all terms to the left:
0-(-16t^2+150t+50)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+50)=0
We get rid of parentheses
16t^2-150t-50=0
a = 16; b = -150; c = -50;
Δ = b2-4ac
Δ = -1502-4·16·(-50)
Δ = 25700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25700}=\sqrt{100*257}=\sqrt{100}*\sqrt{257}=10\sqrt{257}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-10\sqrt{257}}{2*16}=\frac{150-10\sqrt{257}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+10\sqrt{257}}{2*16}=\frac{150+10\sqrt{257}}{32} $
| 24x-6-18x+4=21x-6-15x+17 | | 8(4e-5)=-72 | | 5/8+1/3x=46 | | 31/3x=30 | | 2x+10-4x=16-14x+12x-6 | | 3x+x9=8x-4x=9 | | 2x+2.4=8.6 | | 2x-3(-4/3x-4)=-6 | | 12v+14=+10v=80 | | 12v=14=+10v=80 | | 2,685-115h=500 | | 6-5b=-14 | | 1.95(6.2-3x)-4.81=-1846 | | 6-5b=-4 | | 3x-1=13x=71 | | 9=w-15 | | 6p=6p+2 | | 3x+38=11x=58 | | 0=-16t^2+150+50 | | 2+1/2+3/5+2x=6 | | 4x2+16x-20=0 | | 2x-14=3x+5 | | d/8-4=16 | | 0.7(x-2)=-3 | | x+3(2x-3)=12 | | 3x-10+7x+3x-5=180 | | -1/2g=-11/3 | | x2-4x-5=0 | | -0.58x+0.28x=8.1 | | t/7=14 | | -39x^2+76x-32=-32 | | -3b/11+8b/22=5/11 |